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The question posed by my title is: If not numbers, then what?
The computer was invented as a number cruncher but, in order
to perform numerical tasks efficiently, it had to be given im-
portant non-numerical capabilities. I will indicate why this had
to be done and what the consequences have been.
Numbers-more precisely, numerals-are patterns of varied

shapes. We distinguish the numeral 2 from the numeral 3 by
noting these differences in shape. Of course, to a computer, the
shapes are not what they are to us. If you open the cover of a
computer, you will not find a pattern inside in the shape of the
numeral 3. Nevertheless, the computer must be able to make
the same kind of discrimination-among electromagnetic
patterns, say-as we make when we recognize a 3. The com-
puter can make tests to determine whether two patterns or
symbols presented to it are equal symbols or unequal sym-
bols-that is, whether they are both instances of the numeral
2 or are instances of different numerals, of the letter "e" or
different letters, of the same English word or different English
words.

It is essential that the computer be able to test equality and
inequality of symbols, and the symbols that the computer
compares and manipulates can denote anything-letters, words,
numbers. A computer is an example of a physical symbol sys-
tem, a system capable of manipulating symbols that are rep-
resented in some physical medium, whether it be steel or silicon
or neuronal tissue.

COMPUTER CAPABILITIES
A computer can perform a few basic operations (1). It can read
symbols from external sources and register them internally. It
can write symbols, putting them out onto display devices. It can
store symbols for indefinite periods. It can copy symbols from
one storage location to another. As I mentioned, it can compare
symbols and then-a very important capability-it can proceed
along one path if it finds the symbols compared to be the same,
and another path if they are different. This last is the branch
operation familiar to all of us who have worked with com-
puters.

If a symbol stored in the computer represents an instruction
instead of data, the computer must be able to understand that
symbol and to interpret it. Whatever the computer pro-
gramming language and whatever the electromagnetic mode
of memory storage, when we give the computer the instruction
"add 3 and 3," we expect it to answer "6." This means that it
has to understand the meaning of the instruction word "add,"
however that word may be symbolized and in whatever pro-
gramming language.

Early in the history of the development of the modern-
computer, the advantage was seen of storing the program in the
computer memory in just the same way as data were stored.
Instead of following the model of the Jacquard loom, in which
the program controlling its operations is recorded on a long
cardboard strip outside the machine, the designers of the
computer saw that greater speed could be achieved with an

internally stored program. It was this insight that unintendedly
gave the modern computer its universality and, in particular,
its capabilities for non-numerical computation.

Except for important differences in speed and memory ca-
pacity outlined by Oliver (2), the modern computer (which
means any computer built in the past 25 years) is not funda-
mentally different from the early computers that were designed
at the University of Pennsylvania or by John von Neumann and
his associates. If you store the program in exactly the same way
as you store the data, then program and data inside the com-
puter become interchangeable. You can operate on data as
though they were program, and you can operate on and change
programs as though they were data. This has important con-
sequences.

Provided a computer meets the specifications I have out-
lined-the ability to perform basic symbol manipulations and
to store its programs in memory-its hardware specifications
are irrelevant for our purposes. In principle, you can do exactly
the same things with the computer regardless of whether it is
assembled from relays, tubes, germanium diodes, transistors,
chips, or, some of us think, neurons.

SYMBOL SYSTEM HYPOTHESIS
The remainder of my remarks are based on a hypothesis usually
described as the "physical symbol system hypothesis." The
hypothesis is that a physical system can exhibit intelligence if,
and only if, it is a properly programmed physical symbol system
(3). By physical symbol system, I mean a system that has the
basic capabilities, just described, of a modern computer.
The term "intelligence" in the hypothesis also needs defi-

nition. Intelligence, say psychologists, is what intelligence tests
measure. I think we can improve on that definition. A system
is intelligent if, when given problems that we and other human
beings regard as difficult, it is able to discover solutions for those
problems. Clearly, intelligence is not a unitary thing. A system,
including ourselves, might be able to solve problems of one kind
and completely unable to solve problems of another kind.
Hence, a physical symbol system might exhibit intelligence in
one problem domain and not in another. But if the physical
symbol system hypothesis is correct, this limitation is a matter
of programming and is not intrinsic.
The hypothesis is an empirical hypothesis. It is an assertion

of what an actual physical system can or cannot do. The usual
way in which we test such hypotheses is by designing and
building the systems in question, presenting them with tasks
whose performance would illustrate various kinds of intelli-
gence, and measuring the speed and quality of this perfor-
mance. The hypothesis does not postulate that if a system ex-
hibits intelligence in a particular area the processes and pro-
grams that made the performance possible are unique. There
may be a number of equivalent ways of solving the same
problem. Some of them might require extensive manipulation
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of symbols whereas others, which we would regard as the more
elegant and clever, would require only a modest amount of
processing.
The physical symbol system hypothesis might be called the

basic hypothesis of artificial intelligence research. It underlies
all efforts to induce computers to do intelligent things, whether
they accomplish this with the help of clever tricks or mainly by
the use of brute computational force.

There is a stronger form of the hypothesis: a physical symbol
system not only can exhibit intelligence but also can do so by
adopting the same methods that human beings adopt in solving
problems in the same problem domains-that is, that one can
program a computer to simulate human cognitive processes.
Thus, non-numerical computation has two main branches. The
first, usually called "artificial intelligence," is aimed at pro-
gramming computers to behave intelligently. The second,
usually called "cognitive simulation," is aimed at achieving
artificial intelligence in a humanoid way, by simulating human
methods.

PROGRAMMING LANGUAGES
Schwartz (4) pointed out how critical it is for us, in making use
of the new capabilities of the ever more powerful computers
that become available to us, to deal effectively with the pro-
gramming problem. To the degree that the research program
of artificial intelligence is successful, we will find ways, as we
already have to some extent, of shifting the burden of pro-
gramming to the computer itself. Some examples of how this
has been done have already been mentioned in connection with
the topic of automated design. Research in artificial intelligence
and non-numerical computation has also addressed the pro-
gramming problem.

It was recognized very early, simultaneously with the de-
velopment of the first high-level programming languages, that
if you are to get a computer to do tasks that require it to explore
in unpredictable directions, you must develop software tech-
niques for organizing memories to accommodate the unpre-
dictable or at least the unpredicted. A chess-playing computer,
for example, must be able to store in memory the tree of posi-
tions it generates by searching out moves and countermoves.
Because the shape of that search tree cannot be anticipated
because certain branches may grow very large, the usual
techniques for organizing computer memory by preassigning
specific blocks to specific foreseen uses will not work. So a
technique had to be developed in the middle 1950s, at the same
time that FORTRAN-like languages were being developed, to
handle irregularly shaped search trees. Because the languages
and storage schemes had to permit search in different directions
without knowing in advance what the shape of the tree was
going to be, you could not preallocate memory. It is a little like
the problem the Lord had in designing our own memories. He
did not know whether we were going to speak Hebrew or
Greek, and therefore He could not allocate particular parts of
memory to the one language and other parts to the other.
Memory had to be sufficiently flexible so that it could hold ei-
ther one of these languages, or Chinese or some other.
The particular solution that was found for this problem for

artificial intelligence purposes, but which also found other
important applications in computing, is called "list processing"
(1, 5). It is a software technique that can be used with standard
computer hardware. The first list-processing languages were
a series called IPL (Information Processing Language); the
mostly widely used today is a language called LISP.
A list-processing language stores information in memory in

ordered sets-lists-that need not be located sequentially in the
hardware memory but may be distributed about in a wholly

arbitrary way. The ordering is defined by storing with each
symbol a pointer that designates the memory location of the
next symbol on the list. The programming language contains
instructions for finding the symbol that is next on a list to a given
symbol, inserting a symbol in a list in an arbitrary location,
finding a symbol in a list, and the like.
Up to the present, this kind of flexibility in the organization

of computer memories has been accomplished through list-
processing languages which have to be painfully interpreted
or translated by the computer, instruction by instruction, into
its underlying machine instructions. Although some of the ef-
ficiency that is lost by this interpretive procedure can be re-
covered by compiling the program in advance of execution,
even with compilation, the use of list-processing languages re-
duces by an order of magnitude the speed of a computation
(that is, of any computation that could readily be carried out
without using such techniques). At the present time, several
groups are designing computers that will have list-processing
capabilities built into hardware, with a consequent major gain
in speed of execution.

In considerable part, the idea of organizing memories as list
structures was borrowed from our knowledge of the organiza-
tion of human memory, in particular the fact that human
memory is associative. Memory can be thought of as an as-
semblage of lists or a collection of nodes with links connecting
them. The human memory is also a little like an encyclopedia
with a very large body of text, in order to find the text that you
want to read, you have to use an elaborate index. No matter
where items are located, you can find them if appropriate index
entries are associated with them. List-processing techniques
have been developed for generating such indexes automatically
so that the programmer does not have to pay explicit attention
to where information is stored (6). It is like a looseleaf ency-
clopedia in which new items can be added anywhere at any
time.

These are some of the ways in which programming methods
developed for use in non-numerical computation have enabled
us to borrow some of the organizational techniques that are used
to store and process symbols in the human brain. Because these
techniques are implementable in software, they depend on
neither the hardware of a particular computer nor the neuro-
physiology of the brain. That is fortunate, because we know
very little about the latter as it relates to the implementation
of associative storage or processes.

PRODUCTION SYSTEMS
Another class of technical programming issues that had to be
addressed before non-numerical computation could go very
far included those concerned with controlling the path of
computation-i.e., how the system can decide what it will do
next. Here, the early ideas were quite parallel with those that
were adopted for algebraic computation in the FORTRAN-like
languages. One of these was the idea of being able to define
subroutines. For example, in a program for filling out an income
tax return, one subroutine might do some additions and sub-
tractions to calculate adjusted gross income. Then the system
should be able to incorporate this subroutine and others into
large and larger structures until the whole hierarchy of closed
subroutines is capable of computing the tax. The idea of writing
programs as such hierarchies (sometimes referred to as
"structured programming") received much of its early impetus
from the research on list-processing languages.
The idea of subroutine hierarchies is widely used, but it turns

out not to provide all the flexibility that is needed for the con-
venient programming of artificial intelligence systems. In
particular, it creates too rigid a control over the course of the
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computation, so that inappropriate actions are taken when
events occur that were not foreseen or prepared for. An alter-
native programming organization, production systems (1), is
now becoming more and more popular in artificial intelli-
gence.
On the theoretical side, the idea of production systems

predates the invention of the modern computer, going back to
the logicians Post, Church, Turing, and Markov. The idea is that
you can build a perfectly general programming language
("perfectly general" means one in which anything can be
programmed that can be programmed in another computer
language) in the form of lists of homogeneous instructions called
"productions."

In a production system, all of the instructions are in one basic
form: a set of conditions (C) followed by actions (A), C A.
The rule of operation is that, whenever the conditions of a
production are satisfied, the actions of the production are exe-
cuted. Various rules may be introduced to resolve the conflict
that arises when the conditions of two or more productions are
satisfied simultaneously. One rule imposes a prespecified pri-
ority ranking among the productions; another requires that
productions with stronger conditions be executed before pro-
ductions with weaker conditions. These details will not concern
us here.
A production system for driving an automobile might contain

a production, "if there is a red light -- stop." Another might
specify, "if there is a green light -- proceed." If the former
production were given priority over the latter-the safe ar-
rangement-a combination of red and green lights would bring
the car to a halt.

Evidence is gradually accumulating that the control of
human behavior is managed by something that resembles a
production system. When they are carrying out cognitive tasks,
people are sensitive to two kinds of things. They are sensitive
to some aspects of the visual and auditory stimuli impinging on
them-stimuli that might include the marks on a sheet of paper
on which they are writing down numbers or words. Second,
their behavior is responsive to goals. The behavior must be
oriented to the present state of affairs as revealed through the
senses and it must be goal-oriented if it is to be rational, pur-
posive behavior.
By incorporating in a production both conditions that test for

features of the external world and features that test for the
presence of goals, we can bring about actions that are appro-
priate both to the situation in which a system finds itself and
to the goals that it has stored in memory. Programs have been
written for a wide range of task domains-solving problems in
physics or geometry, making medical diagnoses, to mention a
couple-that carry out successful problem-solving searches
under the control of production systems.

MEANS/ENDS ANALYSIS
Having sketched some of the programming techniques that are
used in artificial intelligence and cognitive simulation, let me
turn to some specific examples of applications of these tech-
niques. One interesting area of application, just beginning to
find practical use in industry, is the automatic design of paths
for chemical synthesis. Suppose we want to create a particular
kind of molecule. We have available a supply of reagents and
a body of chemical knowledge about possible reactions-their
inputs, their outputs, and perhaps information about their yields
and about the conditions they require. We incorporate this

I have as my starting point these reagents. What is the differ-
ence between the molecule and the reagents? (There will usu-

ally be many such differences.) In the list of reactions (repre-
sented by productions), is there any that will take a subset of the
reagents and produce a substance that is a little closer to my
target molecule? Let us try that reaction. Now I have produced
a new molecule and am a little closer to my goal. I will just
continue this process recursively until I find a reaction path that
leads from reagents to desired molecule.

If you examine this process a bit, you will see that it is close
to what in human affairs we call "means/ends analysis" (7, 8).
You have a goal. You have some potential means for reaching
it. You analyze the relationship between your goal and what
you have available. You find a difference between them. From
your knowledge stored in memory, you find some kind of op-

erator that will (or may) reduce the difference. You apply the
operator, producing a new situation. You play the same game
over again. Means/ends analysis provides a nearly complete
specification for the organization of a computer program ca-

pable of engaging in purposeful search. The design calls for one
additional essential element, a control structure to decide at
each step what the system will try next. The systems that now
do this kind of chemical synthesis, at a quite sophisticated level,
illustrate a number of the broad principles that were discovered
in the first decade of research on artificial intelligence.

HEURISTIC SEARCH
One of these broad principles is heuristic search-that is, highly
selective search through immense spaces of possibilities where
even the computing power and speed of the modern computer
does not allow it to search everywhere or nearly everywhere.

It has been estimated that there are 10120 different possible
games of chess. Whether the correct number be 10120 or 10100
or even only 1060, even the kinds of computers that are prom-

ised for the 1990s will not search spaces of this size exhaustively.
Search has to be highly selective, and we have to borrow heavily
from the kinds of principles of selectivity that humans use in
their search. All of the artificial intelligence programs that I
know of that are at all successful in exhibiting intelligence in
some task make heavy use of the principle of selective heuristic
search.

For a serial system, human or computer, to search through
a branching tree of possibilities, some rule must be imposed to
determine where to search next. From a programming stand-
point, the simplest rules are breadth-first search and depth-first
search (1). In breadth-first search, all branches are explored one

step ahead, then all twigs of those branches, and so on. In
depth-first search, a branch is explored until the answer is found
or the continuation seems unpromising. Then the search backs
up to the nearest unexplored branch and continues again in

depth. Wide experience shows that neither of these procedures
competes effectively with best-first search. In best-first search,
each branch that has not yet been explored is assigned a value,
an estimate of the likelihood that it lies on an easy path to the
goal. At each step, the search is continued from the unexplored
tip that has the highest value. In this scheme, search can shift
flexibly from one part to another of the search tree as the
evaluations are altered by new information derived from the
search.

These are not new principles. What is new is the demon-
stration that with the use of just these principles plus the basic
capabilities of the computer one can do sophisticated things like

knowledge in productions that allow the following kind of
monologue to be carried out. I want to synthesize this molecule;
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chemical synthesis and medical diagnosis at a professional
level.
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LESSONS FROM CHESS
The game of chess has become a sort of Drosophila of artificial
intelligence, a standard task domain in which experiments can
be conducted and knowledge accumulated (9-11). Chess is a
nice task for this purpose because, like real life, it does not have
smooth mathematical structure. The knights make queer,
jagged moves. The edges of the board create complex boundary
conditions. Furthermore, an elaborate rating system exists for
measuring the skill of human players and, hence, also for cali-
brating chess-playing programs. For this and other reasons, it
is an excellent domain in which to test artificial intelligence
techniques.

At present the best computer programs have expert or weak
master competence. In rapid play (at 5 or 10 see per move) they
can defeat strong masters fairly often. But under tournament
rules, when people have more time to think, they cannot; the
comparative advantage of the computer dissipates under these
circumstances. The strength of chess programs is improving
steadily as a function both of improvements in the programs
and increase in speed of the computers on which they are im-
plemented. Within a few years they will be ready for grand-
master competition.
The research on chess programs, which has been going on for

more than 20 years, illustrates the tradeoff between speed and
cunning. The human being is heavily dependent on cun-
ning-chess knowledge and heuristics that compensate for his
inability to search large trees. The computer gains important
advantages by making its wheels spin fast, although the strong
programs do not rely on brute force alone but incorporate ex-
tensive knowledge that enables them to search selectively. They
look at hundreds of thousands of alternative positions before
making a move-not at 100100 or even 107.
We have good empirical evidence from the psychological

laboratory that, when a chess grand master looks at a compli-
cated middle-game position and ponders for perhaps 15 min
before taking a move, he probably does not consider more than
100 branches on the tree of possible moves and countermoves.
As a matter of fact, the evidence shows that he does not consider
any more branches than does a duffer or a class A player. The
only statistic that discriminates the grand master from weaker
players is that he examines the relevant branches of the search
tree while they commonly look at irrelevant branches and make
the wrong move.

SIMULATION OF HUMAN THINKING
The aspect of non-numerical computing in which I am par-
ticularly interested is the use of the computer to simulate human
thinking. The aim is to find out more about ourselves, about how
we think, and, as possible practical outcomes, to help us to think
better, to improve teaching and learning processes in our soci-
ety, and to improve decision-making processes in business,
governmental, and educational organizations.

Study of the thought processes used in solving college-level
physics problems is proving to be a productive direction of re-
search (12). A physics professor (assumed to be expert) is asked
to solve a sophomore physics problem; a sophomore who is
currently taking the physics course is also set to solving it. Then,
computer programs are built to simulate the thought processes
of the expert and of the novice. Comparison of the programs
reveals the basic differences in the ways in which they ap-
proached the problems and in the pre-stored knowledge and
skills they applied to them. The final step in the research, and
this is still prospective, will be to build some adaptive production
systems that will gradually evolve from novice toward expert
status. By an adaptive production system I mean a program that

has capabilities for modifying itself, including capabilities for
constructing new productions and ingesting them.
What does a program need in order to solve physics problems

even at the novice level? First, it has to have a language-pro-
cessing component (13). Although we are far from being able
to handle language in its full generality, there are programs
today that, within limits, will handle the language of the
problems at the end of the chapter in a physics textbook. They
can parse the kinds of sentences that are found there, and they
can be provided with appropriate vocabulary. So, as a first re-
quirement, the physics program has to have a considerable
capability for natural language processing.

Second, there has to be a semantic component (14). We know
that when a good physicist solves a problem he does not just read
the English and translate it directly into algebra. We know that
he goes through an intermediate stage in which he creates what
we would call a physical representation of the problem. This
may take the form of a sketch on a piece of paper or a mental
picture of the problem. A considerable part of the research on
problem-solving in physics is directed at building, in computer
memories, symbolic structures (schemata) that have the kinds
of semantic information that is held in the physicist's mental
picture. Of course, the problem-solving program also needs a
mathematical component capable of manipulating algebraic
expressions to set up and to solve the equations of the
problem.

Space does not permit me to describe here how an adaptive
production system can be superimposed on a problem-solving
system of the kind I have just described, in order to enable it to
learn and to improve its performance. Several such systems, for
simple subdomains within physics, algebra, and geometry have
already been constructed (15-17). One idea that has been quite
successful has been to provide such a program with worked-out
problem examples. Using means/ends analysis, the adaptive
production system is able to determine what action was per-
formed at each step of the example and what change was ac-
complished. This information is then converted into a new
production, C -- A, in which the conditions C are inferred from
changes produced by the action, and the action itself becomes
A.

CONCLUSION
I have been able to mention only a tiny sample of the advances
in artificial intelligence, cognitive simulation, and non-nu-
merical computing in general that are going on today. At this
time there are programs in practical use that analyze mass
spectrograms automatically and identify the molecules that
produced the spectrogram. Several programs have been de-
veloped for medical diagnosis which, although not yet used on
a routine basis, have already reached a good clinical level of
competence in internal medicine (18) and in microbial diseases
(19). Programs now under development are capable of dis-
covering lawful patterns in bodies of empirical data. The ex-
amples are almost endless.

I have presented here a personal view of a field that is bur-
geoning very rapidly, especially as application areas begin to
branch off. There are specialists now, for example, who are
spending all of their time on medical diagnosis programs; other
specialists devote their time to mass spectrography programs,
and so on.

In the kinds of non-numerical computation I have been il-
lustrating, the symbols that the computer manipulates are rarely
interpretable as numbers. They are more often interpretable
as English words and phrases or as abstract representations that
are used in many fields in problem solving. Non-numerical
computation-artificial intelligence and cognitive simula-
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tion-may turn out to be the most significant of all the conse-
quences of the invention of the computer, not merely or perhaps
not even because of the additional computing power it gives
us but because it gives us deep insights into the nature of in-
telligence and hence into the operation of the human mind.
With the aid of this new device, the computer, used in the way
that I have been describing, we are learning to obey that ancient
injunction that was said to have been inscribed at Delphi,
"Know thyself."
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